Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.893
Filtrar
1.
Quant Imaging Med Surg ; 14(4): 3131-3145, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38617169

RESUMO

Background: The MYCN copy number category is closely related to the prognosis of neuroblastoma (NB). Therefore, this study aimed to assess the predictive ability of 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) radiomic features for MYCN copy number in NB. Methods: A retrospective analysis was performed on 104 pediatric patients with NB that had been confirmed by pathology. To develop the Bio-omics model (B-model), which incorporated clinical and biological aspects, PET/CT radiographic features, PET quantitative parameters, and significant features with multivariable stepwise logistic regression were preserved. Important radiomics features were identified through least absolute shrinkage and selection operator (LASSO) and univariable analysis. On the basis of radiomics features obtained from PET and CT scans, the radiomics model (R-model) was developed. The significant bio-omics and radiomics features were combined to establish a Multi-omics model (M-model). The above 3 models were established to differentiate MYCN wild from MYCN gain and MYCN amplification (MNA). The calibration curve and receiver operating characteristic (ROC) curve analyses were performed to verify the prediction performance. Post hoc analysis was conducted to compare whether the constructed M-model can distinguish MYCN gain from MNA. Results: The M-model showed excellent predictive performance in differentiating MYCN wild from MYCN gain and MNA, which was better than that of the B-model and R-model [area under the curve (AUC) 0.83, 95% confidence interval (CI): 0.74-0.92 vs. 0.81, 95% CI: 0.72-0.90 and 0.79, 95% CI: 0.69-0.89]. The calibration curve showed that the M-model had the highest reliability. Post hoc analysis revealed the great potential of the M-model in differentiating MYCN gain from MNA (AUC 0.95, 95% CI: 0.89-1). Conclusions: The M-model model based on bio-omics and radiomics features is an effective tool to distinguish MYCN copy number category in pediatric patients with NB.

2.
Head Neck ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622973

RESUMO

BACKGROUND: Trigeminal trophic syndrome (TTS) is a rare condition caused by damage to the trigeminal nervous system, resulting in sensory disturbances and ulcers on the face. Treating TTS is complex and often requires medical or surgical intervention like flap reconstruction. However, there is limited research on surgical treatments for TTS ulcers. METHODS: We report the case of a 19-year-old man with TTS. We employed an innovative surgical technique involving dual cross-face nerve grafts. In the initial procedure, corneal neuralization was accomplished using supraorbital and cross-face infraorbital nerve graft. The subsequent operation utilized auricular composite tissue flap transplantation repair and cross-face mental nerve graft. RESULTS: This procedure led to rapid and sustained healing, as well as aesthetic improvement. CONCLUSION: Cross-face nerve grafts is a promising tool in the treatment of refractory ulcers caused by diseases such as TTS.

3.
Immun Inflamm Dis ; 12(4): e1251, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38607251

RESUMO

BACKGROUND: For a long time, the prevailing viewpoint suggests that shorter telomere contribute to chromosomal instability, which is a shared characteristic of both aging and cancer. The newest research presented that T cell immune deficiency rather than chromosome instability predisposes patients with short telomere syndromes to some cancers. However, the relationship between genetically determined telomere length (TL) and immune cells remains unclear. METHODS: The two-sample Mendelian randomization analysis was conducted to elucidate the potential causal relationship. The genetic data of TL and immune cells were obtained from the Genome-Wide Association Study. The inverse variance weighted (IVW) method was used to estimate the effects primarily and another four methods were as a supplement. Sensitivity analysis was used to test the results. RESULTS: The IVW method showed a significant correlation between TL and the percentage of T cells in lymphocytes (odds ratio [OR]: 1.222, 95% confidence interval [CI]: 1.014-1.472, p = .035), indicating that shorter TL significantly increases the risk of low T cell percentage. Further analysis of T cell subsets indicated that shorter TL may primarily lead to a lower percentage of Natural Killer T cells (OR: 1.574, 95% CI: 1.281-1.935, p < .001). Analysis of B cell subsets revealed that shorter TL may be associated with a higher percentage of Naive-mature B cells, and a lower percentage of Memory B cells. And the sensitivity analysis indicated the validity and robustness of our findings. CONCLUSION: In summary, our findings suggest that shorter TL may be associated with a decline in the percentage of T cell, as well as impediments in the differentiation of B cell, consequently leading to the onset of immunosenescence and immunodeficiency. The relevant mechanisms and potential therapeutic avenues still need further investigation.


Assuntos
Estudo de Associação Genômica Ampla , Transtornos do Crescimento , Hipercalcemia , Síndromes de Imunodeficiência , Doenças Metabólicas , Nefrocalcinose , Timo/anormalidades , Humanos , Análise da Randomização Mendeliana , Linfócitos
4.
Foods ; 13(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38611423

RESUMO

In this study, we present a comprehensive literature review of the potential impacts of climate change on potato storage. Potato preservation can help reduce food loss and waste while increasing long-term food security, as potatoes are one of the most important crops worldwide. The review's results suggest climate change can negatively affect potato storage, especially tuber sprouting and diseases in storage chambers. Lower Sielianinov coefficient values (indicating dry and hot conditions) during the vegetative season of potato growing can lead to earlier sprouting. For instance, a decrease of 0.05 in the Sielianinov coefficient during the growing season results in tubers stored at 3 °C sprouting 25 days earlier and tubers stored at 5 °C experiencing a 15-day reduction in dormancy. This is due to the fact that the dry and hot climate conditions during the vegetation period of potato planting tend to shorten potato tubers' natural dormancy, which further leads to earlier sprouting during storage. Furthermore, high Sielianinov coefficient values may lead to worse disease situations. The results also suggest that research about the impacts of climate change on potato storage is very limited at the current stage, and further studies are needed to address the key knowledge gaps identified in this study.

5.
Int J Biol Macromol ; 266(Pt 2): 131289, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38570002

RESUMO

Intranasal vaccination offers crucial protection against influenza virus pandemics. However, antigens, especially subunit antigens, often fail to induce effective immune responses without the help of immune adjuvants. Our research has demonstrated that a polyelectrolyte complex, composed of curdlan sulfate/O-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (CS/O-HTCC), effectively triggers both mucosal and systemic immune responses when administrated intranasal. In this study, stable nanoparticles formed by curdlan-O-HTCC conjugate (CO NP) were prepared and characterized. Furthermore, the efficacy of CO NP was evaluated as a mucosal adjuvant in an intranasal influenza H1N1 subunit vaccine. The results revealed that CO NP exhibits uniform and spherical morphology, with a size of 190.53 ± 4.22 nm, and notably, it remains stable in PBS at 4 °C for up to 6 weeks. Biological evaluation demonstrated that CO NP stimulates the activation of antigen-presenting cells (APCs), including macrophages and dendritic cells (DCs), both in vitro and in vivo. Furthermore, intranasal administration of CO NP effectively elicits cellular and humoral immune responses, notably enhancing mucosal immunity. Thus, CO NP emerges as a promising mucosal adjuvant for influenza subunit vaccines.

6.
Heliyon ; 10(7): e28304, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38571656

RESUMO

Background: The aim of this study was to assess whether intravenous dexamethasone was noninferior to perineural dexamethasone as an adjuvant to ropivacaine for a combination of saphenous and sciatic nerve blocks in patients undergoing foot and ankle surgery. Methods: This was a prospective, blinded, randomized noninferiority study. Seventy-five patients, aged 18-75 years, with an American Society of Anesthesiologists (ASA) physical status I-III who underwent foot and ankle surgery were involved. Patients scheduled for ultrasound-guided popliteal sciatic nerve block and saphenous nerve block were randomized to receive 0.375% ropivacaine with 7.5 mg of dexamethasone perineurally (Dex-PN), 10 mg of dexamethasone intravenously (Dex-IV) or neither (Placebo). The primary outcome was the duration of analgesia. The major secondary outcomes were the composite pain intensity and opioid consumption score at 0-48 h intervals after anesthesia. Results: The mean analgesic duration was 26.2 h in the Dex-IV group and 27.9 h in the Dex-PN group (duration difference, -1.7; 95% CI, -3.8 to 0.43; P = 0.117), and both durations were significantly longer than that in the placebo group (17.6 h, P < 0.001). Conditions for establishing non-inferiority were met. Conclusions: Our findings indicate that a single 10-mg intravenous dose of dexamethasone was noninferior to the combined dose of ropivacaine plus deaxmethasone in terms of duration of analgesia for foot and ankle surgery.

7.
Front Pharmacol ; 15: 1285797, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572426

RESUMO

Background: In recent years, diabetic kidney disease (DKD) has emerged as a prominent factor contributing to end-stage renal disease. Tubulointerstitial inflammation and lipid accumulation have been identified as key factors in the development of DKD. Earlier research indicated that Astragaloside IV (AS-IV) reduces inflammation and oxidative stress, controls lipid accumulation, and provides protection to the kidneys. Nevertheless, the mechanisms responsible for its protective effects against DKD have not yet been completely elucidated. Purpose: The primary objective of this research was to examine the protective properties of AS-IV against DKD and investigate the underlying mechanism, which involves CD36, reactive oxygen species (ROS), NLR family pyrin domain containing 3 (NLRP3), and interleukin-1ß (IL-1ß). Methods: The DKD rat model was created by administering streptozotocin along with a high-fat diet. Subsequently, the DKD rats and palmitic acid (PA)-induced HK-2 cells were treated with AS-IV. Atorvastatin was used as the positive control. To assess the therapeutic effects of AS-IV on DKD, various tests including blood sugar levels, the lipid profile, renal function, and histopathological examinations were conducted. The levels of CD36, ROS, NLRP3, Caspase-1, and IL-1ß were detected using western blot analysis, PCR, and flow cytometry. Furthermore, adenovirus-mediated CD36 overexpression was applied to explore the underlying mechanisms through in vitro experiments. Results: In vivo experiments demonstrated that AS-IV significantly reduced hyperglycemia, dyslipidemia, urinary albumin excretion, and serum creatinine levels in DKD rats. Additionally, it improved renal structural abnormalities and suppressed the expression of CD36, NLRP3, IL-1ß, TNF-α, and MCP-1. In vitro experiments showed that AS-IV decreased CD36 expression, lipid accumulation, and lipid ROS production while inhibiting NLRP3 activation and IL-1ß secretion in PA-induced HK-2 cells. Conclusion: AS-IV alleviated renal tubule interstitial inflammation and tubule epithelial cell apoptosis in DKD rats by inhibiting CD36-mediated lipid accumulation and NLRP3 inflammasome activation.

8.
Angew Chem Int Ed Engl ; : e202402139, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563765

RESUMO

The development of artificial receptors that combine ultrahigh-affinity binding and controllable release for active guests holds significant importance in biomedical applications. On one hand, a complex with an exceedingly high binding affinity can resist unwanted dissociation induced by dilution effect and complex interferents within physiological environments. On the other hand, stimulus-responsive release of the guest is essential for precisely activating its function. In this context, we expanded hydrophobic cavity surface of a hypoxia-responsive azocalix[4]arene, affording Naph-SAC4A. This modification significantly enhanced its aqueous binding affinity to 1013 M-1, akin to the naturally occurring strongest recognition pair, biotin/(strept-)avidin. Consequently, Naph-SAC4A emerges as the first artificial receptor to simultaneously integrate ultrahigh recognition affinity and actively controllable release. The markedly enhanced affinity not only improved Naph-SAC4A's sensitivity in detecting rocuronium bromide in serum, but also refined the precision of hypoxia-responsive doxorubicin delivery at the cellular level, demonstrating its immense potential for diverse practical applications.

9.
Opt Express ; 32(7): 11134-11149, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38570969

RESUMO

This research addressed the drawbacks of the conventional hybrid structure and processing technique by presenting a novel distributed fiber optic sensor based on a hybrid Michelson and Mach-Zehnder interferometer. The sensor can achieve blind spot free positioning and has a wide response frequency, additionally its structure is not complex. It can obtain two phase signals from each of the two interferometers by using a demodulation method that uses a 3 × 3 optical coupler. To determine the position of the disturbance, we computed cross-correlations on the two signals following basic mathematical techniques. Markov Transition Field was used to transform the phase signals-which had been filtered by a band pass filter-into two-dimensional images. Tagged photos built a dataset, which is then fed into a neural network to identify patterns. Experiments have shown that the frequency response capacity of the structure was verified, and it was able to achieve location within 0-30 km with location errors of ±85 m. In a six-category pattern recognition, the testing set accuracy was 98.74%.

10.
Adv Mater ; : e2400737, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38572792

RESUMO

Electrode crosstalk between anode and cathode at elevated temperatures has been identified as a real culprit triggering the thermal runaway of lithium-ion batteries. Herein, to address this challenge, a novel smart polymer electrolyte is prepared through in-situ polymerization of methyl methacrylate and acrylic anhydride monomers within a succinonitrile-based dual-anion deep eutectic solvent. Owing to the abundant active unsaturated double bonds on the as-obtained polymer matrix end, this smart polymer electrolyte can spontaneously form a dense crosslinked polymer network under elevated temperatures, effectively slowing down the crosstalk diffusion kinetics of lithium ions and active gases. Impressively, LiCoO2/graphite pouch cells employing this smart polymer electrolyte demonstrate no thermal runaway even at the temperature up to 250 °C via accelerating rate calorimeter testing. Meanwhile, because of its abundance of functional motifs, this smart polymer electrolyte can facilitate the formation of stable and thermally robust electrode/electrolyte interface on both electrodes, ensuring the long cycle life and high safety of LIBs. In specific, this smart polymer electrolyte endows 1.1 Ah LiCoO2/graphite pouch cell with a capacity retention of 96% after 398 cycles at 0.2 C. This article is protected by copyright. All rights reserved.

11.
ACS Nano ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38604994

RESUMO

Rechargeable alkali metal-CO2 batteries, which combine high theoretical energy density and environmentally friendly CO2 fixation ability, have attracted worldwide attention. Unfortunately, their electrochemical performances are usually inferior for practical applications. Aiming to reveal the underlying causes, a combinatorial usage of advanced nondestructive and postmortem characterization tools is used to intensively study the failure mechanisms of Li/Na-CO2 batteries. It is found that a porous interphase layer is formed between the separator and the Li/Na anode during the overvoltage rising and battery performance decaying process. A series of control experiments are designed to identify the underlying mechanisms dictating the observed morphological evolution of Li/Na anodes, and it is found that the CO2 synergist facilitates Li/Na chemical corrosion, the process of which is further promoted by the unwanted galvanic corrosion and the electrochemical cycling conditions. A detailed compositional analysis reveals that the as-formed interphase layers under different conditions are similar in species, with the main differences being their inconsistent quantity. Theoretical calculation results not only suggest an inherent intermolecular affinity between the CO2 and the electrolyte solvent but also provide the most thermodynamically favored CO2 reaction pathways. Based on these results, important implications for the further development of rechargeable alkali metal-CO2 batteries are discussed. The current discoveries not only fundamentally enrich our knowledge of the failure mechanisms of rechargeable alkali metal-CO2 batteries but also provide mechanistic directions for protecting metal anodes to build high-reversible alkali metal-CO2 batteries.

12.
World J Diabetes ; 15(3): 502-518, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38591083

RESUMO

BACKGROUND: Jianpi Gushen Huayu Decoction (JPGS) has been used to clinically treat diabetic nephropathy (DN) for many years. However, the protective mechanism of JPGS in treating DN remains unclear. AIM: To evaluate the therapeutic effects and the possible mechanism of JPGS on DN. METHODS: We first evaluated the therapeutic potential of JPGS on a DN mouse model. We then investigated the effect of JPGS on the renal metabolite levels of DN mice using non-targeted metabolomics. Furthermore, we examined the effects of JPGS on c-Jun N-terminal kinase (JNK)/P38-mediated apoptosis and the inflammatory responses mediated by toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB)/NOD-like receptor family pyrin domain containing 3 (NLRP3). RESULTS: The ameliorative effects of JPGS on DN mice included the alleviation of renal injury and the control of inflammation and oxidative stress. Untargeted metabolomic analysis revealed that JPGS altered the metabolites of the kidneys in DN mice. A total of 51 differential metabolites were screened. Pathway analysis results indicated that nine pathways significantly changed between the control and model groups, while six pathways significantly altered between the model and JPGS groups. Pathways related to cysteine and methionine metabolism; alanine, tryptophan metabolism; aspartate and glutamate metabolism; and riboflavin metabolism were identified as the key pathways through which JPGS affects DN. Further experimental validation showed that JPGS treatment reduced the expression of TLR4/NF-κB/NLRP3 pathways and JNK/P38 pathway-mediated apoptosis related factors. CONCLUSION: JPGS could markedly treat mice with streptozotocin (STZ)-induced DN, which is possibly related to the regulation of several metabolic pathways found in kidneys. Furthermore, JPGS could improve kidney inflammatory responses and ameliorate kidney injuries in DN mice via the TLR4/NF-κB/NLRP3 pathway and inhibit JNK/P38 pathway-mediated apoptosis in DN mice.

13.
BMC Med Educ ; 24(1): 386, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589890

RESUMO

BACKGROUND: Medical students face a heavy burden as they are tasked with acquiring a vast amount of medical knowledge within a limited time frame. Self-directed learning (SDL) has become crucial for efficient and ongoing learning among medical students. However, effective ways to foster SDL ability among Chinese medical students are lacking, and limited studies have identified factors that impact the SDL ability of medical students. This makes it challenging for educators to develop targeted strategies to improve students' SDL ability. This study aims to assess SDL ability among Chinese medical students and examine the effects of career calling and teaching competencies on SDL ability, as well as the possible mechanisms linking them. METHODS: Data were collected from 3614 respondents (effective response rate = 60.11%) using cross-sectional online questionnaires and analyzed using IBM SPSS Statistics 22.0. The questionnaire comprised a Demographic Characteristics Questionnaire, Self-directed Learning Ability Scale (Cronbach's alpha = 0.962), Teaching Competencies Scale, and Career Calling Scale. RESULTS: The average SDL ability score of Chinese medical students was 3.68 ± 0.56, indicating a moderate level of SDL ability. The six factors of the Self-directed Learning Ability Scale-self-reflection, ability to use learning methods, ability to set study plans, ability to set studying objectives, ability to adjust psychological state, and willpower in studying-accounted for 12.90%, 12.89%, 12.39%, 11.94%, 11.34%, and 8.67% of the variance, respectively. Furthermore, career calling was positively associated with SDL learning ability (ß = 0.295, p < 0.001), and SDL learning ability was positively associated with teaching competencies (ß = 0.191, p < 0.01). Simple slope analysis showed that when the level of teaching competencies was higher, the influence of career calling on SDL ability was stronger. CONCLUSIONS: Chinese medical students' SDL ability has room for improvement. Medical students could strengthen their willpower in studying by setting milestones goals with rewards, which could inspire their motivation for the next goals. Teachers should guide students to learn experience to improve students' reflective ability. Educators play a crucial role in bridging the gap between career calling education and SDL ability enhancement, highlighting the significance of optimal teaching competencies. Colleges should focus on strengthening teachers' sense of career calling and teaching competencies.


Assuntos
Educação Médica , Estudantes de Medicina , Humanos , Estudos Transversais , Estudantes de Medicina/psicologia , Currículo , China
14.
World J Gastroenterol ; 30(10): 1420-1430, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38596496

RESUMO

BACKGROUND: Various animal models have been used to explore the pathogenesis of choledochal cysts (CCs), but with little convincing results. Current surgical techniques can achieve satisfactory outcomes for treatment of CCs. Consequently, recent studies have focused more on clinical issues rather than basic research. Therefore, we need appropriate animal models to further basic research. AIM: To establish an appropriate animal model that may contribute to the investigation of the pathogenesis of CCs. METHODS: Eighty-four specific pathogen-free female Sprague-Dawley rats were randomly allocated to a surgical group, sham surgical group, or control group. A rat model of CC was established by partial ligation of the bile duct. The reliability of the model was confirmed by measurements of serum biochemical indices, morphology of common bile ducts of the rats as well as molecular biology experiments in rat and human tissues. RESULTS: Dilation classified as mild (diameter, ≥ 1 mm to < 3 mm), moderate (≥ 3 mm to < 10 mm), and severe (≥ 10 mm) was observed in 17, 17, and 2 rats in the surgical group, respectively, while no dilation was observed in the control and sham surgical groups. Serum levels of alanine aminotransferase, aspartate aminotransferase, total bilirubin, direct bilirubin, and total bile acids were significantly elevated in the surgical group as compared to the control group 7 d after surgery, while direct bilirubin, total bilirubin, and gamma-glutamyltransferase were further increased 14 d after surgery. Most of the biochemical indices gradually decreased to normal ranges 28 d after surgery. The protein expression trend of signal transducer and activator of transcription 3 in rat model was consistent with the human CC tissues. CONCLUSION: The model of partial ligation of the bile duct of juvenile rats could morphologically simulate the cystic or fusiform CC, which may contribute to investigating the pathogenesis of CC.


Assuntos
Cisto do Colédoco , Humanos , Feminino , Ratos , Animais , Cisto do Colédoco/cirurgia , Reprodutibilidade dos Testes , Ratos Sprague-Dawley , Modelos Animais , Dilatação Patológica , Bilirrubina , Modelos Animais de Doenças
15.
Mol Biol Rep ; 51(1): 497, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598010

RESUMO

Helicobacter pylori (H. pylori) is a gram-negative bacteria with a worldwide infection rate of 50%, known to induce gastritis, ulcers and gastric cancer. The interplay between H. pylori and immune cells within the gastric mucosa is pivotal in the pathogenesis of H. pylori-related disease. Following H. pylori infection, there is an observed increase in gastric mucosal macrophages, which are associated with the progression of gastritis. H. pylori elicits macrophage polarization, releases cytokines, reactive oxygen species (ROS) and nitric oxide (NO) to promote inflammatory response and eliminate H. pylori. Meanwhile, H. pylori has developed mechanisms to evade the host immune response in order to maintain the persistent infection, including interference with macrophage phagocytosis and antigen presentation, as well as induction of macrophage apoptosis. Consequently, the interaction between H. pylori and macrophages can significantly impact the progression, pathogenesis, and resolution of H. pylori infection. Moreover, macrophages are emerging as potential therapeutic targets for H. pylori-associated gastritis. Therefore, elucidating the involvement of macrophages in H. pylori infection may provide novel insights into the pathogenesis, progression, and management of H. pylori-related disease.


Assuntos
Gastrite , Helicobacter pylori , Humanos , Macrófagos , Fagocitose , Apoptose
16.
Front Cell Dev Biol ; 12: 1357370, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577504

RESUMO

As a crucial component of the male reproductive system, the epididymis plays multiple roles, including sperm storage and secretion of nutritive fluids for sperm development and maturation. The acquisition of fertilization capacity by sperm occurs during their transport through the epididymis. Compared with the testis, little has been realized about the importance of the epididymis. However, with the development of molecular biology and single-cell sequencing technology, the importance of the epididymis for male fertility should be reconsidered. Recent studies have revealed that different regions of the epididymis exhibit distinct functions and cell type compositions, which are likely determined by variations in gene expression patterns. In this research, we primarily focused on elucidating the cellular composition and region-specific gene expression patterns within different segments of the epididymis and provided detailed insights into epididymal function in male fertility.

17.
Mol Biotechnol ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637450

RESUMO

Laryngeal squamous cell carcinoma (LSCC) has the highest mortality rate among head and neck squamous cell carcinoma. This study was designed to investigate the biological effect of long noncoding RNA (lncRNA) MSC antisense RNA 1 (MSC-AS1) on LSCC development and the underlying mechanism. The expression and prognostic value of lncRNAs in head and neck squamous cell carcinoma were predicted in the bioinformatics tools. The overexpression of MSC-AS1 in LSCC patients predicted a poor prognosis. Depletion of MSC-AS1 using shRNA repressed the malignant phenotype of AMC-HN-8 and TU-177 cells. MSC-AS1, mainly localized in the nucleus, interacted closely with the transcription factor CCCTC-binding factor (CTCF). CTCF played anti-tumor effects in vitro and in vivo. Ataxin-7 (ATXN7) was predicted to be a downstream target of CTCF, whose expression was negatively controlled by MSC-AS1. MSC-AS1 was found to block the expression of CTCF, thereby repressing ATXN7. Finally, MSC-AS1 overexpression in LSCC was governed by YTH domain-containing protein 1 (YTHDC1)-mediated m6A modification. In summary, our research identified the YTHDC1/MSC-AS1/CTCF/ATXN7 axis in LSCC development, which indicated that MSC-AS1 is an attractive biomarker in the LSCC treatment.

18.
Adv Sci (Weinh) ; : e2401536, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582502

RESUMO

Rechargeable magnesium batteries (RMBs) have garnered significant attention due to their potential to provide high energy density, utilize earth-abundant raw materials, and employ metal anode safely. Currently, the lack of applicable cathode materials has become one of the bottleneck issues for fully exploiting the technological advantages of RMBs. Recent studies on Mg cathodes reveal divergent storage performance depending on the electrolyte formulation, posing interfacial issues as a previously overlooked challenge. This minireview begins with an introduction of representative cathode-electrolyte interfacial phenomena in RMBs, elaborating on the unique solvation behavior of Mg2+, which lays the foundation for interfacial chemistries. It is followed by presenting recently developed strategies targeting the promotion of Mg2+ desolvation in the electrolyte and alternative cointercalation approaches to circumvent the desolvation step. In addition, efforts to enhance the cathode-electrolyte compatibility via electrolyte development and interfacial engineering are highlighted. Based on the abovementioned discussions, this minireview finally puts forward perspectives and challenges on the establishment of a stable interface and fast interfacial chemistry for RMBs.

19.
Bioresour Technol ; : 130667, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38583674

RESUMO

Due to the complexity of biomass structures, the conversion of raw biomass into value-added chemicals is challenging and often requires efficient pretreatment of the biomass. In this paper, a simple and green pre-oxidation method, which was conducted under the conditions of 2 wt% H2O2, 80 min, and 150 °C, was reported to significantly increase the production of levoglucosan (LG) from biomass pyrolysis. The result showed that the LG yield significantly increased from 2.3 wt% (without pre-oxidation) to 23.1 wt% when pine wood was employed as a sample for pyrolysis at 400 °C, resulting from the removal of hemicellulose fraction and the in-situ acid catalysis of lignin carboxyl groups formed during the pre-oxidation. When the conditions for pre-oxidation became harsher than the above, the LG yield reduced because the decomposition of cellulose fraction in biomass. The study supplies an effective method for utilization of biomass as chemicals.

20.
Adv Sci (Weinh) ; : e2302988, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430538

RESUMO

Peripheral nerve injury (PNI) remains a challenging area in regenerative medicine. Nerve guide conduit (NGC) transplantation is a common treatment for PNI, but the prognosis of NGC treatment is unsatisfactory due to 1) neuromechanical unmatching and 2) the intra-conduit inflammatory microenvironment (IME) resulting from Schwann cell pyroptosis and inflammatory-polarized macrophages. A neuromechanically matched NGC composed of regenerated silk fibroin (RSF) loaded with poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (P:P) and dimethyl fumarate (DMF) are designed, which exhibits a matched elastic modulus (25.1 ± 3.5 MPa) for the peripheral nerve and the highest 80% elongation at break, better than most protein-based conduits. Moreover, the NGC can gradually regulate the intra-conduit IME by releasing DMF and monitoring sciatic nerve movements via piezoresistive sensing. The combination of NGC and electrical stimulation modulates the IME to support PNI regeneration by synergistically inhibiting Schwann cell pyroptosis and reducing inflammatory factor release, shifting macrophage polarization from the inflammatory M1 phenotype to the tissue regenerative M2 phenotype and resulting in functional recovery of neurons. In a rat sciatic nerve crush model, NGC promoted remyelination and functional and structural regeneration. Generally, the DMF/RSF/P:P conduit provides a new potential therapeutic approach to promote nerve repair in future clinical treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...